Goetz, Aurèle, Durmaz, Ali Riza, Müller, Martin, Thomas, Akhil, Britz, Dominik, Kerfriden, Pierre ORCID: https://orcid.org/0000-0002-7749-3996 and Eberl, Chris 2022. Addressing materials' microstructure diversity using transfer learning. npj Computational Materials 8 , 27. 10.1038/s41524-022-00703-z |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (4MB) |
Official URL: http://dx.doi.org/10.1038/s41524-022-00703-z
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Advanced Research Computing @ Cardiff (ARCCA) Engineering |
Publisher: | Nature Research |
ISSN: | 2057-3960 |
Date of First Compliant Deposit: | 2 March 2022 |
Date of Acceptance: | 5 January 2022 |
Last Modified: | 01 Aug 2024 13:21 |
URI: | https://orca.cardiff.ac.uk/id/eprint/147787 |
Citation Data
Cited 6 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |