Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Application of CRISPR/Cas9 editing and digital droplet PCR in human iPSCs to generate novel knock-in reporter lines to visualize dopaminergic neurons

Überbacher, Christa, Obergasteiger, Julia, Volta, Mattia, Venezia, Serena, Müller, Stefan, Pesce, Isabella, Pizzi, Sara, Lamonaca, Giulia, Picard, Anne, Cattelan, Giada, Malpeli, Giorgio, Zoli, Michele, Beccano-Kelly, Dayne ORCID: https://orcid.org/0000-0003-3592-8354, Flynn, Rowan, Wade-Martins, Richard, Pramstaller, Peter P, Hicks, Andrew A, Cowley, Sally A and Corti, Corrado 2019. Application of CRISPR/Cas9 editing and digital droplet PCR in human iPSCs to generate novel knock-in reporter lines to visualize dopaminergic neurons. Stem Cell Research 41 10.1016/j.scr.2019.101656

Full text not available from this repository.

Abstract

Human induced pluripotent stem cells (hiPSCs) have become indispensable for disease modelling. They are an important resource to access patient cells harbouring disease-causing mutations. Derivation of midbrain dopaminergic (DAergic) neurons from hiPSCs of PD patients represents the only option to model physiological processes in a cell type that is not otherwise accessible from human patients. However, differentiation does not produce a homogenous population of DA neurons and contaminant cell types may interfere with the readout of the in vitro system. Here, we use CRISPR/Cas9 to generate novel knock-in reporter lines for DA neurons, engineered with an endogenous fluorescent tyrosine hydroxylase – enhanced green fluorescent protein (TH-eGFP) reporter. We present a reproducible knock-in strategy combined with a highly specific homologous directed repair (HDR) screening approach using digital droplet PCR (ddPCR). The knock-in cell lines that we created show a functioning fluorescent reporter system for DA neurons that are identifiable by flow cytometry.

Item Type: Article
Date Type: Published Online
Status: Published
Schools: Medicine
Publisher: Elsevier
ISSN: 1873-5061
Date of Acceptance: 8 November 2019
Last Modified: 10 Nov 2022 11:20
URI: https://orca.cardiff.ac.uk/id/eprint/150138

Citation Data

Cited 6 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item