Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Accounting for dilution of SARS-CoV-2 in wastewater samples using physico-chemical markers

Wilde, Henry, Perry, William Bernard, Jones, Owen ORCID:, Kille, Peter ORCID:, Weightman, Andrew ORCID:, Jones, Davey L. ORCID:, Cross, Gareth and Durance, Isabelle ORCID: 2022. Accounting for dilution of SARS-CoV-2 in wastewater samples using physico-chemical markers. Water 14 (18) , 2885. 10.3390/w14182885

[thumbnail of water-14-02885-v3.pdf]
PDF - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview


Most sewer networks collect domestic wastewater and a variable proportion of extraneous water, such as rainwater, through surface runoff and industrial discharges. Accounting for wastewater dilution is essential to properly quantify wastewater particle loads, whether these are molecular fragments of SARS-CoV-2, or other substances of interest such as illicit drugs or microplastics. This paper presents a novel method for obtaining real-time estimates of wastewater dilution and total daily volume through wastewater treatment works, namely when flow data is not available or unreliable. The approach considers the levels of several physico-chemical markers (ammonia, electrical conductivity, and orthophosphate) in the wastewater against their dry-weather levels. Using high-resolution data from the national Wastewater Surveillance Programme of Wales, we illustrate how the method is robust to spikes in markers and can recover peaks in wastewater flow measurements that may have been capped by hydraulic relief valves. We show the method proves effective in normalising SARS-CoV-2 viral loads in wastewater samples and discuss other applications for this method, looking at wastewater surveillance as a vital tool to monitor both human and environmental health.

Item Type: Article
Date Type: Published Online
Status: Published
Schools: Biosciences
Publisher: MDPI
ISSN: 2073-4441
Date of First Compliant Deposit: 20 September 2022
Date of Acceptance: 13 September 2022
Last Modified: 09 Oct 2023 22:02

Actions (repository staff only)

Edit Item Edit Item


Downloads per month over past year

View more statistics