Zhang, Hua, He, Xue, Yan, Wei, Jiang, Zhigang and Zhu, Shuo 2022. A machine learning-based approach for product maintenance prediction with reliability information conversion. Autonomous Intelligent Systems 2 (1) , 15. 10.1007/s43684-022-00033-3 |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (1MB) | Preview |
Abstract
Predictive maintenance (PdM) cannot only avoid economic losses caused by improper maintenance but also maximize the operation reliability of product. It has become the core of operation management. As an important issue in PdM, the time between failures (TBF) prediction can realize early detection and maintenance of products. The reliability information is the main basis for TBF prediction. Therefore, the main purpose of this paper is to establish an intelligent TBF prediction model for complex mechanical products. The reliability information conversion method is used to solve the problems of reliability information collection difficulty, high collection cost and small data samples in the process of TBF prediction based on reliability information for complex mechanical products. The product reliability information is fully mined and enriched to obtain more reliable and accurate TBF prediction results. Firstly, the Fisher algorithm is employed to convert the reliability information to expand the sample, and the compatibility test is also discussed. Secondly, BP neural network is used to realize the final prediction of TBF, and PSO algorithm is used to optimize the initial weight and threshold of BP neural network to avoid falling into local extreme value and improve the convergence speed. Thirdly, the mean-absolute-percentage-error and the Coefficient of determination are selected to evaluate the performance of the proposed model and method. Finally, a case study of TBF prediction for a remanufactured CNC milling machine tool (XK6032-01) is studied in this paper, and the results show that the feasibility and superiority of the proposed TBF prediction method
Item Type: | Article |
---|---|
Date Type: | Published Online |
Status: | Published |
Schools: | Engineering |
ISSN: | 2730-616X |
Date of First Compliant Deposit: | 23 November 2022 |
Date of Acceptance: | 5 July 2022 |
Last Modified: | 07 Jun 2023 08:23 |
URI: | https://orca.cardiff.ac.uk/id/eprint/153902 |
Actions (repository staff only)
Edit Item |