Puccetti, Elena, Beissert, Tim, Güller, Saskia, Li, Jun E, Hoelzer, Dieter, Ottmann, Oliver G ![]() ![]() |
Abstract
Since the 19th century, arsenic (As2O3) has been used in the treatment of chronic myelogenous leukemia (CML) characterized by the t(9;22) translocation. As2O3 induces complete remissions in patients with acute promyelocytic leukemia. The response to As2O3 is genetically determined by the t(15;17)-or the t(9;22)-specific fusion proteins PML/RARalpha or BCR/ABL. The PML portion of PML/RARalpha is crucial for the sensitivity to As2O3. PML is nearly entirely contained in PML/RARalpha. PML is upregulated by oncogenic RAS in primary fibroblasts. The aberrant kinase activity of BCR/ABL leads to constitutive activation of RAS. Therefore, we hypothesized that BCR/ABL could increase sensitivity to As2O2-induced apoptosis by modifying PML expression. To disclose the mechanism of As2O3-induced apoptosis in PML/RARalpha- and BCR/ABL-expressing cells, we focused on the role of PML for As2O3-induced cell death. Here we report that (i) sensitivity to As2O3-induced apoptosis of U937 cells can be increased either by overexpression of PML, or by conditional expression of activated RAS; (ii) also the expression of the t(8;21)-related AML-1/ETO increased sensitivity to As2O3-induced apoptosis; (iii) both BCR/ABL and AML-1/ETO activated RAS and modified the PML expression pattern; (iv) the expression of either BCR/ABL or AML-1/ETO rendered U937 cells sensitive to interferon alpha-induced apoptosis. In summary, these data suggest a crucial role of factors able to upregulate PML for As2O2-induced cell death.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Medicine |
Publisher: | Springer Nature [academic journals on nature.com] |
ISSN: | 0950-9232 |
Date of Acceptance: | 30 April 2003 |
Last Modified: | 29 Feb 2024 10:15 |
URI: | https://orca.cardiff.ac.uk/id/eprint/166056 |
Actions (repository staff only)
![]() |
Edit Item |