Gualdani, Maria Pia and Winter, Raphael
2025.
A blow-down mechanism for the Landau-Coulomb equation.
Journal of Functional Analysis
288
(7)
, 110816.
10.1016/j.jfa.2024.110816
![]() |
![]() |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (578kB) |
Abstract
We investigate the Landau-Coulomb equation and show an explicit blow-down mechanism for a family of initial data that are small-scale, supercritical perturbations of a Maxwellian function. We establish global well-posedness and show that the initial bump region will disappear in a time of order one. We prove that the function remains close to an explicit function during the blow-down. As a consequence, our result shows stretched exponential decay in time of the solution towards equilibrium. The key ingredients of our proof are the explicit blow-down function and a novel two-scale linearization in appropriate time-dependent spaces that yields uniform estimates in the perturbation parameter.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Mathematics |
Publisher: | Elsevier |
ISSN: | 0022-1236 |
Date of First Compliant Deposit: | 22 January 2025 |
Date of Acceptance: | 31 December 2024 |
Last Modified: | 29 Jan 2025 14:15 |
URI: | https://orca.cardiff.ac.uk/id/eprint/175519 |
Actions (repository staff only)
![]() |
Edit Item |