Tonks, Alex ORCID: https://orcid.org/0000-0002-6073-4976, Pearn, Lorna, Tonks, Amanda Jayne, Pearce, Laurence, Hoy, Terence George, Phillips, Sarah, Fisher, Janet, Downing, James R., Burnett, Alan Kenneth and Darley, Richard Lawrence ORCID: https://orcid.org/0000-0003-0879-0724 2003. The AML-1 fusion gene promotes extensive self-renewal of human primary erythroid cells. Blood 101 (2) , pp. 624-632. 10.1182/blood-2002-06-1732 |
Abstract
The t(8;21) translocation, which encodes the AML1-ETO fusion protein (now known as RUNX1-CBF2T1), is one of the most frequent translocations in acute myeloid leukemia, although its role in leukemogenesis is unclear. Here, we report that exogenous expression of AML1-ETO in human CD34+ cells severely disrupts normal erythropoiesis, resulting in virtual abrogation of erythroid colony formation. In contrast, in bulk liquid culture of purified erythroid cells, we found that while AML1-ETO initially inhibited proliferation during early (erythropoietin [EPO]-independent) erythropoiesis, growth inhibition gave way to a sustained EPO-independent expansion of early erythroid cells that continued for more than 60 days, whereas control cultures became growth arrested after 10 to 13 days (at the EPO-dependent stage of development). Phenotypic analysis showed that although these cells were CD13 and CD34, unlike control cultures, these cells failed to up-regulate CD36 or to down-regulate CD33, suggesting that expression of AML1-ETO suppressed the differentiation of these cells and allowed extensive self-renewal to occur. In the early stages of this expansion, addition of EPO was able to promote both phenotypic (CD36+, CD33, glycophorin A+) and morphologic differentiation of these cells, almost as effectively as in control cultures. However, with extended culture, cells expressing AML1-ETO became refractory to addition of this cytokine, suggesting that a block in differentiation had been established. These data demonstrate the capacity of AML1-ETO to promote the self-renewal of human hematopoietic cells and therefore support a causal role for t(8;21) translocations in leukemogenesis. (Blood. 2003;101:624-632)
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Medicine |
Subjects: | R Medicine > R Medicine (General) R Medicine > RC Internal medicine > RC0254 Neoplasms. Tumors. Oncology (including Cancer) |
ISSN: | 1528-0020 |
Last Modified: | 01 Jul 2024 14:19 |
URI: | https://orca.cardiff.ac.uk/id/eprint/178 |
Citation Data
Cited 52 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |