Kanki, T., Young, Mark Thomas ORCID: https://orcid.org/0000-0002-9615-9002, Sakaguchi, M., Hamasaki, N. and Tanner, M. J. A. 2003. The N-terminal region of the transmembrane domain of human erythrocyte band 3. Residues critical for membrane insertion and transport activity. Journal of Biological Chemistry 278 (8) , pp. 5564-5573. 10.1074/jbc.M211662200 |
Abstract
We studied the role of the N-terminal region of the transmembrane domain of the human erythrocyte anion exchanger (band 3; residues 361-408) in the insertion, folding, and assembly of the first transmembrane span (TM1) to give rise to a transport-active molecule. We focused on the sequence around the 9-amino acid region deleted in Southeast Asian ovalocytosis (Ala-400 to Ala-408), which gives rise to nonfunctional band 3, and also on the portion of the protein N-terminal to the transmembrane domain (amino acids 361-396). We examined the effects of mutations in these regions on endoplasmic reticulum insertion (using cell-free translation), chloride transport, and cell-surface movement in Xenopus oocytes. We found that the hydrophobic length of TM1 was critical for membrane insertion and that formation of a transport-active structure also depended on the presence of specific amino acid sequences in TM1. Deletions of 2 or 3 amino acids including Pro-403 retained transport activity provided that a polar residue was located 2 or 3 amino acids on the C-terminal side of Asp-399. Finally, deletion of the cytoplasmic surface sequence G(381)LVRD abolished chloride transport, but not surface expression, indicating that this sequence makes an essential structural contribution to the anion transport site of band 3.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Biosciences |
Subjects: | Q Science > Q Science (General) |
Publisher: | American Society for Biochemistry and Molecular Biology |
ISSN: | 0021-9258 |
Last Modified: | 25 Oct 2022 09:15 |
URI: | https://orca.cardiff.ac.uk/id/eprint/57846 |
Citation Data
Cited 26 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |