Aldrovandi, MacEler
2013.
Characterisation of novel lipids generated by activated human platelets via COX-1.
PhD Thesis,
Cardiff University.
Item availability restricted. |
Preview |
PDF
- Accepted Post-Print Version
Download (4MB) | Preview |
![]() |
PDF
- Supplemental Material
Restricted to Repository staff only Download (774kB) |
Abstract
Initially, prostaglandins (PGs) were considered to only exist as free acid mediators. Although, formation of PG glycerol esters and PG ethanolamides by cellular cyclooxygenase (COX)-2 has been reported, generation of complex oxidised lipids via COX-1 has not been considered. In this study, formation of sixteen unique PG-containing phospholipids generated by agonist-activated human platelets is demonstrated using lipidomic approaches. Precursor scanning-tandem mass spectrometry identified a group of specific lipids comprising PGE2, PGD2 and two previously undescribed PG-like molecules (named PGb and PGc), attached to four phosphatidylethanolamine (PE) phospholipids (16:0p/, 18:1p/, 18:0p/ and 18:0a/). PGb and PGc were also detected as free eicosanoids and their structures remain to be characterised. These novel lipids formed within 2-5 minutes of platelet activation by thrombin, collagen or ionophore and required activation of several intracellular signalling intermediates, including cytosolic phospholipase A2 (cPLA2), p38 mitogen-activated protein kinase (MAPK), src tyrosine kinases, phospholipase C (PLC) and cytosolic calcium. Unlike free PGs that are secreted, PG-PEs remain cell associated, suggesting an autocrine mode of action. Aspirin supplementation in vivo (75 mg/day) or in vitro (1 mM) blocked their generation, indicating that COX-1 is required. Pharmacological studies using inhibitors of fatty acyl re-esterification significantly reduced formation of PG-PEs. Furthermore, purified COX-1 was unable to directly oxidise PE in vitro. Collectively, these indicate that PG-PEs are initially formed as free PGs via COX-1, and then rapidly esterified into PEs. In summary, this is the first demonstration of acute generation of PG-PEs in agonist-activated human platelets from endogenous substrate via COX-1. These unique lipids may represent additional bioactive molecules from this key platelet enzyme.
Item Type: | Thesis (PhD) |
---|---|
Status: | Unpublished |
Schools: | Medicine |
Subjects: | Q Science > QR Microbiology > QR180 Immunology R Medicine > R Medicine (General) |
Date of First Compliant Deposit: | 30 March 2016 |
Last Modified: | 27 Mar 2020 02:29 |
URI: | https://orca.cardiff.ac.uk/id/eprint/60146 |
Actions (repository staff only)
![]() |
Edit Item |