Jones, Aled R.C., Gleghorn, Jason P., Hughes, Clare Elizabeth ORCID: https://orcid.org/0000-0003-4726-5877, Fitz, Lori J., Zollner, Richard, Wainwright, Shane Daniel, Caterson, Bruce ORCID: https://orcid.org/0000-0001-6016-0661, Morris, Elisabeth A., Bonassar, Lawrence J. and Flannery, Carl R. 2007. Binding and localization of recombinant lubricin to articular cartilage surfaces. Journal of Orthopaedic Research 25 (3) , pp. 283-292. 10.1002/jor.20325 |
Abstract
Lubricin is a secreted, cytoprotective glycoprotein that contributes to the essential boundary lubrication mechanisms necessary for maintaining low friction levels at articular cartilage surfaces. Diminishment of lubricin function is thereby implicated as an adverse contributing factor in degenerative joint diseases such as osteoarthritis. Lubricin occurs as a soluble component of synovial fluid, and is synthesized and localized in the superficial layer of articular cartilage (and thus has also been described as “superficial zone protein”, or SZP); however, defined interactions responsible for lubricin retention at this site are not well characterized. In the current studies, we identified molecular determinants that enable lubricin to effectively bind to articular cartilage surfaces. Efficient and specific binding to the superficial zone was observed for synovial lubricin, as well as for recombinant full-length lubricin and a protein construct comprising the lubricin C-terminal (hemopexin-like) domain (LUB-C, encoded by exons 7–12). A construct representing the N-terminal region of lubricin (LUB-N, encoded by exons 2–5) exhibited no appreciable cartilage-binding ability, but displayed the capacity to dimerize, and thus potentially influence lubricin aggregation. Disulfide bond disruption significantly attenuated recombinant lubricin and LUB-C binding to cartilage surfaces, demonstrating a requirement for protein secondary structure in facilitating the appropriate localization of lubricin at relevant tissue interfaces. These findings help identify additional key attributes contributing to lubricin functionality, which would be expected to be instrumental in maintaining joint homeostasis.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Biosciences |
Publisher: | John Wiley & Sons |
ISSN: | 0736-0266 |
Last Modified: | 27 Oct 2022 08:46 |
URI: | https://orca.cardiff.ac.uk/id/eprint/63374 |
Citation Data
Cited 117 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |