Davis, Timothy ORCID: https://orcid.org/0000-0003-4932-9379, Rowlands, K., Allison, J. R., Shabala, S. S., Ting, Y.-S., Lagos, C. d. P., Kaviraj, S., Bourne, N., Dunne, Loretta ORCID: https://orcid.org/0000-0001-9880-2543, Eales, Stephen Anthony ORCID: https://orcid.org/0000-0002-7394-426X, Ivison, R. J., Maddox, Steve ORCID: https://orcid.org/0000-0001-5549-195X, Smith, D. J. B., Smith, Matthew William L. ORCID: https://orcid.org/0000-0002-3532-6970 and Temi, P. 2015. Molecular and atomic gas in dust lane early-type galaxies - I. Low star formation efficiencies in minor merger remnants. Monthly Notices of the Royal Astronomical Society 449 (4) , pp. 3503-3516. 10.1093/mnras/stv597 |
Preview |
PDF
- Accepted Post-Print Version
Download (537kB) | Preview |
Abstract
In this work we present IRAM 30-m telescope observations of a sample of bulge-dominated galaxies with large dust lanes, which have had a recent minor merger. We find these galaxies are very gas rich, with H2 masses between 4 × 108 and 2 × 1010 M⊙. We use these molecular gas masses, combined with atomic gas masses from an accompanying paper, to calculate gas-to-dust and gas-to-stellar-mass ratios. The gas-to-dust ratios of our sample objects vary widely (between ≈50 and 750), suggesting many objects have low gas-phase metallicities, and thus that the gas has been accreted through a recent merger with a lower mass companion. We calculate the implied minor companion masses and gas fractions, finding a median predicted stellar mass ratio of ≈40:1. The minor companion likely had masses between ≈107 and 1010 M⊙. The implied merger mass ratios are consistent with the expectation for low-redshift gas-rich mergers from simulations. We then go on to present evidence that (no matter which star formation rate indicator is used) our sample objects have very low star formation efficiencies (star formation rate per unit gas mass), lower even than the early-type galaxies from ATLAS3D which already show a suppression. This suggests that minor mergers can actually suppress star formation activity. We discuss mechanisms that could cause such a suppression, include dynamical effects induced by the minor merger.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Physics and Astronomy |
Subjects: | Q Science > QB Astronomy |
Publisher: | Oxford University Press |
ISSN: | 0035-8711 |
Funders: | STFC |
Date of First Compliant Deposit: | 30 March 2016 |
Date of Acceptance: | 17 March 2015 |
Last Modified: | 20 Nov 2024 07:30 |
URI: | https://orca.cardiff.ac.uk/id/eprint/80229 |
Citation Data
Cited 48 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |