Liu, Xiaoyang, Qin, Jian, Zhao, Kai, Featherston, Carol A. ORCID: https://orcid.org/0000-0001-7548-2882, Kennedy, David ORCID: https://orcid.org/0000-0002-8837-7296, Jing, Yucai and Yang, Guotao
2023.
Design optimization of laminated composite structures using deep artificial neural network and genetic algorithm.
Composite Structures
305
, 116500.
10.1016/j.compstruct.2022.116500
|
|
|
Qin, Jian, Hu, Fu, Liu, Ying ORCID: https://orcid.org/0000-0001-9319-5940, Witherell, Paul, Wang, Charlie C.L., Rosen, David W., Simpson, Timothy, Lu, Yan and Tang, Qian
2022.
Research and application of machine learning for additive manufacturing.
Additive Manufacturing
52
, 102691.
10.1016/j.addma.2022.102691
|
|
|
Qin, Jian, Li, Zhuoqun, Wang, Rui, Li, Li, Yu, Zhe, He, Xun and Liu, Ying ORCID: https://orcid.org/0000-0001-9319-5940
2021.
Industrial Internet of Learning (IIoL): IIoT based Pervasive Knowledge Network for LPWAN – concept, framework and case studies.
CCF Transactions on Pervasive Computing and Interaction
3
, pp. 25-39.
10.1007/s42486-020-00050-2
|
|
|
Qin, Jian, Liu, Ying ORCID: https://orcid.org/0000-0001-9319-5940, Grosvenor, Roger ORCID: https://orcid.org/0000-0001-8942-4640, Lacan, Franck ORCID: https://orcid.org/0000-0002-3499-5240 and Jiang, Zhigang
2019.
Deep learning-driven particle swarm optimisation for additive manufacturing energy optimisation.
Journal of Cleaner Production
, p. 118702.
10.1016/j.jclepro.2019.118702
|
|
|
Chen, Chong, Liu, Ying ORCID: https://orcid.org/0000-0001-9319-5940, Kumar, Maneesh ORCID: https://orcid.org/0000-0002-2469-1382, Qin, Jian and Ren, Yunxia
2019.
Energy consumption modelling using deep learning embedded semi-supervised learning.
Computers and Industrial Engineering
135
, pp. 757-765.
10.1016/j.cie.2019.06.052
|
|
|
Qin, Jian
2019.
Advanced data analytics for additive manufacturing energy consumption modelling, prediction, and management under Industry 4.0.
PhD Thesis,
Cardiff University.
Item availability restricted. |
|
|
Qin, Jian, Liu, Ying ORCID: https://orcid.org/0000-0001-9319-5940 and Grosvenor, Roger ORCID: https://orcid.org/0000-0001-8942-4640
2018.
Multi-source data analytics for AM energy consumption prediction.
Advanced Engineering Informatics
38
, pp. 840-850.
10.1016/j.aei.2018.10.008
|
|
|
Chen, Chong, Liu, Ying ORCID: https://orcid.org/0000-0001-9319-5940, Kumar, Maneesh ORCID: https://orcid.org/0000-0002-2469-1382 and Qin, Jian
2018.
Energy consumption modelling using deep learning technique — a case study of EAF.
Procedia CIRP
72
, pp. 1063-1068.
10.1016/j.procir.2018.03.095
|
|
|
Qin, Jian, Liu, Ying ORCID: https://orcid.org/0000-0001-9319-5940 and Grosvenor, Roger ORCID: https://orcid.org/0000-0001-8942-4640
2017.
A framework of energy consumption modelling for additive manufacturing using Internet of Things.
Procedia CIRP Conference on Manufacturing System
63
, pp. 307-312.
10.1016/j.procir.2017.02.036
|
|
|
Qin, Jian, Liu, Ying ORCID: https://orcid.org/0000-0001-9319-5940 and Grosvenor, Roger ORCID: https://orcid.org/0000-0001-8942-4640
2017.
Data analytics for energy consumption of digital manufacturing systems using Internet of Things method.
Presented at: IEEE International Conference on Automation Science and Engineering,
Xi'an, China,
20-23 August 2017.
IEEE International Conference on Automation Science and Engineering.
|
|
|
Qin, Jian, Liu, Ying ORCID: https://orcid.org/0000-0001-9319-5940 and Grosvenor, Roger ORCID: https://orcid.org/0000-0001-8942-4640
2016.
A categorical framework of manufacturing for industry 4.0 and beyond.
Procedia CIRP
52
, pp. 173-178.
10.1016/j.procir.2016.08.005
|
|
|



Up a level