Gao, Yan ORCID: https://orcid.org/0000-0001-5890-9717, Wu, Jing ORCID: https://orcid.org/0000-0001-5123-9861, Wei, Changyun, Grech, Raphael and Ji, Ze ORCID: https://orcid.org/0000-0002-8968-9902
2025.
Deep reinforcement learning for localisability-aware mapless navigation.
IET Cyber-Systems and Robotics
7
(1)
, e70018.
10.1049/csy2.70018
|
|
|
Xiong, Guanyu, Li, Haijiang ORCID: https://orcid.org/0000-0001-6326-8133 and Gao, Yan ORCID: https://orcid.org/0000-0001-5890-9717
2025.
Cross-domain comparative analysis of digital twins and universalised solutions.
Advanced Engineering Informatics
68
(PartB)
, 103726.
10.1016/j.aei.2025.103726
|
|
|
Chai, Chengzhang ORCID: https://orcid.org/0000-0001-6911-8048, Gao, Yan ORCID: https://orcid.org/0000-0001-5890-9717, Xiong, Guanyu, Liu, Jiucai and Li, Haijiang ORCID: https://orcid.org/0000-0001-6326-8133
2025.
Domain knowledge-driven image captioning for bridge damage description generation.
Automation in Construction
174
, 106116.
10.1016/j.autcon.2025.106116
Item availability restricted. |
|
|
Xiong, Guanyu, Gao, Yan ORCID: https://orcid.org/0000-0001-5890-9717, Chai, Chengzhang ORCID: https://orcid.org/0000-0001-6911-8048, Chen, Kehong and Li, Haijiang ORCID: https://orcid.org/0000-0001-6326-8133
2025.
A BIM component-centred bridge digital twin for smart and practical bridge maintenance.
Presented at: ICCBEI 2025,
Hong Kong,
08-10 January 2025.
Published in: Xiong, Guanyu and Li, Haijiang eds.
|
|
|
Gao, Yan ORCID: https://orcid.org/0000-0001-5890-9717, Lin, Feiqiang, Cai, Boliang, Wu, Jing ORCID: https://orcid.org/0000-0001-5123-9861, Wei, Changyun, Grech, Raphael and Ji, Ze ORCID: https://orcid.org/0000-0002-8968-9902
2024.
Mapless navigation via Hierarchical Reinforcement Learning with memory-decaying novelty.
Robotics and Autonomous Systems
182
, 104815.
10.1016/j.robot.2024.104815
|
|
|
Gao, Yan ORCID: https://orcid.org/0000-0001-5890-9717, Lin, Feiqiang, Wei, Changyun, Grech, Raphael and Ji, Ze ORCID: https://orcid.org/0000-0002-8968-9902
2024.
Target tracking for quadrotors based on deep reinforcement learning.
Presented at: 30th IEEE International Conference on Mechatronics and Machine Vision in Practice,
Leeds, UK,
3-5 October 2024.
30th International Conference on Mechatronics and Machine Vision in Practice (M2VIP).
IEEE,
10.1109/M2VIP62491.2024.10746058
|
|
|
Gao, Yan ORCID: https://orcid.org/0000-0001-5890-9717, Xiong, Guanyu, Li, Haijiang ORCID: https://orcid.org/0000-0001-6326-8133 and Richards, Jarrod
2024.
Exploring bridge maintenance knowledge graph by leveraging GrapshSAGE and text encoding.
Automation in Construction
166
, 105634.
10.1016/j.autcon.2024.105634
|
|
|
Liu, Jiucai, Chai, Chengzhang ORCID: https://orcid.org/0000-0001-6911-8048, Li, Haijiang ORCID: https://orcid.org/0000-0001-6326-8133, Gao, Yan ORCID: https://orcid.org/0000-0001-5890-9717 and Zhu, Xiaofeng
2024.
LLM-informed drone visual inspection of infrastructure.
Presented at: 31st EG-ICE International Workshop on Intelligent Computing in Engineering,
Vigo, Spain,
3-5 July 2024.
|
|
|
Chai, Chengzhang ORCID: https://orcid.org/0000-0001-6911-8048, Gao, Yan ORCID: https://orcid.org/0000-0001-5890-9717, Li, Haijiang ORCID: https://orcid.org/0000-0001-6326-8133 and Xiong, Guanyu
2024.
Automatic generation of bridge defect descriptions using image captioning techniques.
Presented at: The 10th International Conference on Construction Engineering and Project Management,
Sapporo, Hokkaido, Japan,
29 July - 01 August 2024.
ICCEPM 2024 Conference Proceedings.
pp. 319-326.
|
|
|
Chai, Chengzhang, Gao, Yan ORCID: https://orcid.org/0000-0001-5890-9717, Li, Haijiang ORCID: https://orcid.org/0000-0001-6326-8133 and Zhu, Xiaofeng
2024.
Corrosion SAM: adapting segment anything model with parameter-efficient fine-tuning for structural corrosion inspection.
Presented at: 31st EG-ICE International Workshop on Intelligent Computing in Engineering,
Vigo, Spain,
3-5 July 2024.
|
|
|
Chai, Chengzhang ORCID: https://orcid.org/0000-0001-6911-8048, Liu, Jiucai, Gao, Yan ORCID: https://orcid.org/0000-0001-5890-9717, Xiong, Guanyu and Li, Haijiang ORCID: https://orcid.org/0000-0001-6326-8133
2024.
Semantic-enriched image retrieval for bridge damage assessment.
Presented at: The Sixth International Conference on Civil and Building Engineering Informatics (ICCBEI 2025),
Hong Kong, China,
8 -11 January 2025.
Proceedings of the 6th International Conference on Civil and Building Engineering Informatics.
|
|
|
Gao, Yan ORCID: https://orcid.org/0000-0001-5890-9717, Li, Haijiang ORCID: https://orcid.org/0000-0001-6326-8133 and Fu, Weiqi
2023.
Few-shot learning for image-based bridge damage detection.
Engineering Applications of Artificial Intelligence
126
(PartC)
, 107078.
10.1016/j.engappai.2023.107078
|
|
|
Gao, Yan ORCID: https://orcid.org/0000-0001-5890-9717
2023.
Data and informatics-informed digital twins for smart and
practical bridge maintenance.
PhD Thesis,
Cardiff University.
Item availability restricted. |
|
|
Gao, Yan ORCID: https://orcid.org/0000-0001-5890-9717, Li, Haijiang ORCID: https://orcid.org/0000-0001-6326-8133, Xiong, Guanyu and Song, Honghong
2023.
AIoT-informed digital twin communication for bridge maintenance.
Automation in Construction
150
, 104835.
10.1016/j.autcon.2023.104835
|
|
|
Gao, Yan ORCID: https://orcid.org/0000-0001-5890-9717, Li, Haijiang ORCID: https://orcid.org/0000-0001-6326-8133, Fu, Weiqi and Xiong, Guanyu
2023.
Few-shot classification for image-based crack detection.
Presented at: The 30th EG-ICE: International Conference on Intelligent Computing in Engineering,
London, UK,
4-7 July 2023.
|
|
|
Gao, Yan ORCID: https://orcid.org/0000-0001-5890-9717, Li, Haijiang ORCID: https://orcid.org/0000-0001-6326-8133 and Xiong, Guanyu
2022.
An efficient and resilient digital-twin communication framework for smart bridge structural survey and maintenance.
Presented at: 29th EG-ICE International Workshop on Intelligent Computing in Engineering 2022,
Aarhus, Denmark,
6-8 July 2022.
Published in: Teizer, J. and Schultz, C. P. L. eds.
Proceedings of the 29th EG-ICE International Workshop on Intelligent Computing in Engineering.
European Group for Intelligent Computing in Engineering,
pp. 165-175.
|
|
|



Up a level